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THE COTYPE AND UNIFORM CONVEXITY 
OF UNITARY IDEALS 

BY 

D. J. H. GARLING AND N. TOMCZAK-JAEGERMANN* 

ABSTRACT 

Information about geometric properties, such as uniform convexity and smooth- 
ness, type and cotype, of a unitary Banach ideal S~ is obtained from properties 
of the symmetric Banach sequence space Eo In particular S~ has cotype 2 if E 
does. The proofs use real interpolation and complex geometry. 

I. Introduction 

In this paper we solve some problems which arise in the theory of unitary 

ideals. There is a natural correspondence between unitary ideals and symmetric 

Banach sequence spaces, and one would expect properties of an unitary ideal to 

reflect the properties of the corresponding sequence space. Thus the first-named 

author showed [5] that topological properties are related in a natural way, and 

the second-named author showed [12] that the ideals S~ have the same convexity 

and smoothness, type and cotype properties as the spaces lp. Other geometric 

and topological properties have been investigated by Arazy ([1], [2]). 

Nevertheless, the lack of commutativity leads to non-trivial difficulties, and 

the problems which we consider have been in circulation for at least a decade. 

In this paper, we make systematic use of real interpolation methods; thi~ 

means that we have to renorm the spaces which we consider with equivalent 

norms. This is not important in considering cotype, which is an isomorphic 

invariant; we do not know, however, whether the results which we obtain 

concerning uniform convexity (which is an isometric invariant) are valid without 

renorming. 

In considering unitary ideals, it is of course natural to consider ideals of 

operators on a complex Hilbert space, and we also make fundamental use of the 
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complex geometry of the spaces in question. Thus uniform PL-convexity, which 

is implied by (real) uniform convexity and which implies cotype properties, turns 

out to be a very useful tool. A detailed study of the properties of uniform 

PL-convexity is made elsewhere [4]. Let us give the definitions and mention the 

basic result that we use. Suppose that (E, tl H)is a complex Banach space and 

that 0 < p < oo. We define 

/ ( ~ f o  ~ ~ "/~ / 
Hp(e)=inf  IIx+e'°yHdO) - l : t l x H = l , [ l y H = e  . 

(E, II II) is q-uniformly PL-convex (where 2 =< q < ~) if there exists k > 0 such 

that H i (e )=  > ke q for 0<  e <- 1. If (E, H 1]) is q-uniformly PL-convex, it follows 

that E has cotype q. 

Let us now describe the structure of this paper. In section 2, we describe the 

interpolation methods that we use; these are related to the real K-methods of 

classical interpolation theory. We are in fact only concerned with interpolation 

between sequence spaces, and between unitary ideals. In Section 3 we establish 

some operator norm inequalities; although we shall need them later on, they 

appear to have some independent interest. In the next section we introduce the 

concept of K-monotonic norms for sequence spaces and establish the relation- 

ship between such norms and the uniform PL-convexity and (real) uniform 

convexity of the corresponding unitary ideals. In Section 5 we show that a 

p-convex symmetric Banach sequence space can be given an equivalent K-p- 
monotonic norm. This leads to results concerning cotype. In the final section, we 

introduce a different renorming for a symmetric Banach sequence space which 

satisfies an upper p-estimate and a lower q-estimate. This ensures the uniform 
convexity and uniform smoothness of the corresponding unitary ideal with good 

control of the moduli. Here there are more properties to be preserved, and the 

renorming is correspondingly more complicated. 

Throughout the paper we use standard Banach space theory notation. We 

refer to [8] for definitions and notation from the theory of Banach lattices, and to 

[6] for the basic facts about ideals of operators acting in a Hilbert space. 

If A is a compact operator acting in a Hilbert space then I AI denotes the 

"modulus of A ", ]A I= X/A *A, and s (A) = {sj (A)}~=1 denotes the sequence of 

singular numbers of A, i.e., sj(A) is the j th eigenvalue of IAI (where 

eigenvalues are counted in noff-increasing order, according to their multiplicity). 

Suppose that (E, II II)is a symmetric Banach sequence space. The corresponding 

unitary ideal SE is the space 

S~ = {A compact: s(A) E E}, 
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with the norm IIA I1~ = Ils(A)ll for  A E S~. 

In the case E = le, for  1 -< p < o~, we use the nota t ion S~ = Sp and IIA I1~ = 

(E~=~sj(A)e) TM for  A ESp .  Finally, S~ denotes  the space of all compact  

opera tors  and I1.11~ the usual ope ra to r  norm. 

This work was done  at the D e p a r t m e n t  of Mathematics ,  Texas  A and M 

Universi ty,  while the second-named au thor  held a visiting position. Both  authors  

would like to thank El ton  Lacey  and the D e p a r t m e n t  for  their  hospitali ty and for  

financial support .  The  f irst-named au thor  would also like to thank St. John 's  

College, Cambr idge  for financial support .  

2. Some interpolation norms 

In this section we consider some interpola t ion norms related to the real 

K - m e t h o d  ([3] chapters  3 and 5). Suppose that  (Xo, X~) is a couple  of Banach 

spaces. Recall  ([3] p. 38) that  if x E Xo + X~ and ~- > 0, K(~-, x ; Xo, X1) is defined 

by 

g ( ~ ,  x;  Xo, X~) = inf(llxoll + r IIx~ll : Xo ~ Xo, x~ ~ X~, x = Xo÷ x,). 

For  our  purposes,  it will be more  convenient  to work with the quant i ty  

K2(7, x ; X0, X1) = inf{(ll xoll 2 + ~2~1 x l I1~) ~: go ~ Xo, x l ~ x l ,  x -- Xo + x ~ .  

Clearly 

K2(r, x ;  Xo, X~) _-< K( r ,  x ;  Xo, X,)  =< V 2  K2(~-, x, Xo, X~). 

Le t  l_-<r < s  =<~. It is easy to see that  

K2(~', x ; l,, Is) = K2(~', Ix t; l,, Is) = K2(r, x* ;  l,, l~), 

for  x E ls and all ~- > 0, and that  

K2(r, x ; l,, ls ) = inf{(ll Xo I1~ ÷ • 211 x l I1~) ~ : Xo ~ lr, X l ~ l~, Xo, x~ _-> 0, x = Xo + x ~} 

for all r > 0, if x is a positive e lement  of l~. 

The  next  proposi t ion,  which will play a fundamenta l  role in our  arguments ,  

follows f rom the corresponding results for  K ([7] t heo rem 4.1 and [3] t heo rem 

5.2.1; note  though that  there  are errors  in [3] exercises 5.7.2 and 5.7.3). 

PROPOSmON 1. Suppose that 1 <= r < s < o~. There exist positive constants cl 

and  c2 such that 
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c2K2(m° , x ; l , , l , )  < x* ' )  + m  ~ x~" 
j = l  j 1 

<= c~Kdm ~, x ; I,, 1,), 

]'or all x E l, and m = 1 , 2 , . . . ,  where a = 1/r - 1/s. 

Furthermore, 

1/r 

< 1/r = x / 2 g f f m  , x ; L, l~) ½Kdm~ ' , x  ; l,, L )  <= (,=~ x ~ ' )  

for all x E l® and  m = 1, 2 , . . . .  

We now establish some convexity and concavity properties of K2. 

PROPOSITION 2. Let  1 <= r <= 2 <= q <= ~. I f  x and y are in lq, and ~- > 0, then 

K~(r, (I x (+IY V)l/';l,,lq)" <=rffa',x; l,,lq)" + Kff~-, y ; l,,lq)" 

and 

K2(~-,(Ix I q + ly Iq )"  ; /., /. )" > - K 2 0 . , x ; l , , l . )  ~ + K20-, y;/ . ,  lq) ". 

PROOF. Throughout this proof we shall write K2(~', x )  for Kffr, x ; 1,, lq). To 

show the first inequality suppose that ]x ] = Xo + xl and ] y ] = yo + yl with Xo and 

yo positive elements of I, and xi and yl positive elements of lq. Then 

K~0", (Ix ]' + ]y  ].)1.) __< K~(7, (x~, + y~)"' + (x; + yD 1'') 

([[(X~ "4- y~)t/, Hr2 + ,/.21[ (X ~ + y ;)1,, Hq),,2 

--< [(II Xo II; + II yo 11,32" + ~(II X l II; + II y, II;)~" 1'% 

since I, and lq are both r-convex with constants equal to 1. Since 2/r >= 1, by the 

triangle inequality for the space 12/, the last expression is less than or equal to 

[( II x0 II, ~ + 2 II Xl I1~) "2 + (11 yo II, ~ + ~= II y, I1~) ''2] 1,r 

Taking the infimum over all such decompositions of Ix ] and l Y I, it follows that 

K2(~, (I x I '+  ly I')'")----(K~(~, I x I)' + K2(~, I y I)31" 

= (K2(r, x)" + K2(r, y)')l/'. 

To show the second inequality suppose that (Ix ]q +IY 1~)':~ = Zo + z,,  with Zo a 
positive element of /, and zl a positive element of lq. Define elements 

xo=zox(Ixl~+lyl~)-'% x,=z,x(Ixl~+lylq) -':~ 
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and 

y o = z o Y ( l x l q + t y l q )  -l/q, y~=z ly ( l x lq+lY lq ) - l /L  

Note that  x = Xo + x l and y = yo + y~. Moreover ,  Zo = ([xolq + I yolq)~/q and 

~1-- (Ix~l ~ ÷ f y~l,) TM 

Therefore,  since both /, and lq are q-concave with constants equal to 1 and 

since q /2 >= 1, 

(11 zo I1~ + ~-: II z,  lily '~ _-> [(11 Xo II, ~ + II yo I1,~) TM + ~-:(11 X l I1~ + II y~ II~) TM ]~': 

--> [(ll go I1~ ÷ ~: II X l I1~) ~': ÷ (tl yo I1~ ÷ ~: II y l I1~)~':1 TM 

_-> (K~(~-, x )  ~ + K:(~, y)~)~'~. 

Taking the infimum over all such decomposit ions of (I x I q + l Y I q)l/q, we obtain 
that  

~ ( ~ ,  (I x I q + l y I q)~'~) ---- [K:(~, x)~ + K:(~, y)~ ]1,~. 

In the final proposit ion of this section, we consider interpolat ion between 

unitary ideals. 

PROPOSmON 3. Let 1 <= r < s <= oo. Suppose that A E S,. Then 

(i) K2(T,A;Sr,  S~)=K2(%s(A) ; I , , l s )  for all z > 0 .  

(ii) I f  A is Hermitian, 

K2(~-, A ; S,, Ss) = inf{(ll Aoll, ~ ÷ ~:11 A lillY'::  Ao E S,, A1 E S~, 

A = A o + A 1  and Ao, A~ are Hermitian} 

for all T > O. 

(iii) I f  A is positive, 

K2(z, A ; S,, Ss) = inf{(ll Aoll~ ÷ ~:11 A1112) 1/2 .* Ao E St, A1 E Ss, 

A = A o + A 1  and Ao, AI  are positive} 

for all "r > O. 

PROOF. Since K2(z, A ; S,, Ss) = K2(z, IA l; St, Ss) for all z > 0, we can assume 

in case (i) that  A is Hermit ian.  

Suppose that  A = E;=1 e, sj (A)c~j (~ ckj is Hermit ian (where ej = --- 1) and that  

A = A o + A ~ ,  with Ao in S, and A I E S s .  Let 

a~ °~ = (Ao~bj, ckj), a~ ~= (A~bj, ~bj), 
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for j = 1, 2 . . . .  and let 

A'o=~a?qb,@d~, ,  A~=~a~"ck,@~b, .  
j~l  j=l 

Then A L E S , ,  A~ES+, 

II A;II, = II(aS°')ll+ --< Ilaoll,, IIm Ill+ --II(aS'>)ll+ --< Ilaills, 

A = A ~ + A I and (+jsj (A) )  = (a~ °)) + (a~l)). Thus 

a ; S,, Ss) = inf {(11 aoll,  ~ + ~211 a l lib'2 : a o  -- j~ a~%bj @ &j E S+, K2( T~ 

a l =  ~ a}l'~bi@~,~Ss and A = Ao+ a l }  
1=1 

= inf{(llaoll,~ + +211 a111+)1]+ : a o ~  l,, al E Is and 

(+jsj(A )) = ao + a,) 

= inf{(ll ao II, ~ + 2 II a ,  II+Y 2: ao ~ l,, at E ls, 

ao, al  => 0 and s (A)  = ao + al}. 

The first equali ty gives (ii), the second gives (i) and the third equali ty combined  

with the first gives (iii). Part  (i) of this proposi t ion was proved by Arazy  ([1] 

theorem 2.4). 

3. Some operator norm inequalities 

In this section we shall prove some opera to r  norm inequalit ies which we shall 
need  to establish convexity propert ies  of unitary ideals. The  first set of 

inequalit ies is quite  general.  

PROPOSITION 4. Suppose that 1 < p < oo and 1 < u < oo. There exist positive 
constants cp.~ and Cp.~ such that if A and B are operators in Sp then 

(i) if l < p - < 2  

(11 a I1~ + c~.o II B I1~) ~'= - {½(11A + B I1~ + II A - B II~)) ~/~ 

--< ( l la  I1~+ C~. liB II;) 1'~ 

(ii) while if 2 <= p < oo 

(11A I1~ + c,,o II B lily" _-< {~(11 a + B I1~ + II A - B II~)F ~ 

( l l a  I1~+ C~,o liB l i ly 2. 
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PROOF. The modulus of convexity 6sp satisfies 

~sp ( e )  o e max~2.~ 

by [12], theorem 2.2. The left-hand inequalities follow from this, and proposition 

1 of [4]. 
The right-hand inequalities are established by duality. Suppose that p _-> 2. Let 

q = p / (p  - 1) and v = u / (u  - 1) be the conjugate indices, and let h --IIA + B lip 
and ix = IIA - B I1~-There exist operators S and T in Sq such that IIs Ilq --II TL = 
1 and 

Tr(A + B ) S  = h, Tr(A - B ) T  = ix. 
Then 

½(h" + ix") = ½(h ~-~Tr(A + B ) S  + ix"-~Tr(A - B ) T )  

= ½(Tr A (A"-~S + i x ~ - ~ T ) + T r B ( A ~ - ~ S  - ix"-~T))  

=< ~(IIA I1~+ cq-,lollB 11~)1'2(11A"-lS + ~"-1TII~ + cq,o IIA ° - 'S  - ix"-' TI]~0 ''~ 

--< (IIA II~+ c;.'olln [[~)l/2(½(A'"-~)° + ix'" ~,~))1/~ 

by the left-hand inequality of (i). Thus we can take Cp.,, = c ;~. The case where 
1 < p = 2 is proved in exactly the same way. 

The next proposition is concerned with Hermitian operators. 

PROPOSITION 5. (i) I f  1 < p <--_ 2 there exists a positive constant  cp such that if  A 

and B are Hermi t ian  operators in Sp then 

(l[A 11~+ cp liB [[~)~/2 <__ [[A + iB lip _--< ([[A I1~+ liB 11~)~;". 

(ii) I f  2 <-_ p < oo there exists a positive constant  Cp such that if A and B are 

Hermi t ian  operators in Sp then 

(IIA I1¢+ liB [[~)l,p _< ]IA + iB II. ---< (]IA ]l~ + c~ liB lily 'p 

PROOF. We shall prove (i); (ii) follows by duality, as in Proposition 4. Since 

II a + iB I1~ --- II a - iB lip when A and B are Hermitian, the left-hand inequality 
of (i) follows directly from Proposition 4. We prove the right-hand inequality by 

interpolation. If A and B are in $1, then t lA +iBII~<-_IIAII~+IIBII~, by the 

triangle inequality. If p = 2, and A and B are Hermitian 

II A + iB 1122 =- tr((A + i B ) ( A  - iB))  

= tr(A z) + tr(B z) + i t r (BA) - i t r (AB) 

= tr(A 2) + tr(B 2) = II A 1122 + II B I1~ 
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(cf. [6] theorem 8.2). 
Suppose now that 1 < p < 2, that A and B are Hermitian elements of Sp, and 

that 

1=1 j=l  

Define an operator T : 12(R) @212(R)-~ $2 by 

T((yi), (Sj)) = ~ 3'jthj ~ ~bj + i ~ 8j~bj ~) ~bj. 
i=1 j~l  

Considering S2 as a real linear space, T is a real linear mapping and II TII --- 1. 
Also 

IJ T :  II(R)(~1 II(R)---> s, ll <-- i. 

Now by [3] theorem 5.2.2, the quasi-normed space (lp (R)@p lp (R)f  is, up to a 
multiplicative constant, isometric to the real interpolation space 

(l,(n) @111(R), (12(R) @212(R))2)p-,,~ 

and, arguing as in Proposition 3, it is easy to see that (Spf is, up to the same 
multiplicative constant, isometric to ($1,($2)2)p_1,1. By real interpolation ([3] 
theorem 3.11.2) it follows that 

II T : lp (R) ~)p lp (R) ~ Sp II --- 1. 

Applying T to ((aj),(/3i)), it follows that 

IIa + iB 112_ < IIA 112+ liB 112. 

The right-hand inequality in (i) and the left-hand inequality in (ii) also follow 
directly from Clarkson's inequality for the spaces Sp [9]. 

The final results of this section involve positive operators. 

(i) If  A is a positive operator and B a Hermitian operator in PROPOSITION 6. 

L(H) then 

IIA + iB II ~ (IIA I1~+ 2lIB I1~) ~. 

(ii) If  A is a positive element of $1 and B a Hermitian element of $1 then 

II A + iB II1 --> (11 a I1~ + ½11B I1~) 1'2. 

PROOF. First observe that it is sufficient to consider the case where H is two 
dimensional. For given 17 > 0 there exists a unit vector h in H such that 
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H(A + iB)h 11 >= (1 - n)ll(A + iB)II. Let P be the orthogonal projection onto span 
(h,(A + iB)h).  Then 

[[PAP + iPBPI[ >= (1 - 71)[[A + iB II, 

while P a P  is positive, PBP is Hermitian, and II PAP II--< I Ia  II, II PUP II--< lib II. 
By choosing a suitable basis, we can suppose that A and B have matrix 

representations 

a = ( o  ~ h02), B = ( c  b )  

where IIA II = A, _-> A2. Let 

o), o). 
Note that H B, n----[[ B [I and [[ B2][ = I c [ --< [[ B II. Since A B 1  -- B , A ,  

(A - i B ) ( A  + iB) = A2 + B2 + i ( A B 2 -  B2A ) 

so that 

HA + iB IV = [I(A - i B ) ( A  + iB)[[ < [I A2 + i(AB2 - U2J)[I + [IB2ll. 

Now A :  + i(AB2 - B :A  ) has matrix representation 

A ~ i (~  LA:)~ .  
( - i ( M - A 2 ) ~  h2 ] 

If )t~ = A2, this has norm A~ = HA 1[ 2. Otherwise, the norm is equal to the larger 
eigenvalue; a simple calculation shows that 

II A2 + i (AB2 - B2A )ll = ~(X ~ + X 22 + V(A ~ - X ~)2 + 4(h, - h2):ce) 

: , 2 A2 (~ /  4ce - 1 )  = x , + ~ ( x , -  ~) 1 ÷ (,~, + ,~2)------~ 

/ h : _  h2~ <A12+c~ ~, ~ 21 = (X, + X2) 2 

[ \ h i - A 2  2 
= x~ +ce[x---7"-~)<=llAl[ ÷IIBII 2. 

The result for $1 follows by duality. 
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REMARK. Operators represented by matrices 

for small real values of t show that 2 is the best possible constant in the first 

inequality of this proposition. 

If A and B are represented by 

A = ( ~  _01) and B = ( g i t  ~t), 

II a + iB II = ~ + t = II AII + II B I[; thus  it is not possible to drop the condition that 

A is positive. 

4. K-(r, s) monotonicity and the convexity of unitary ideals 

We now make some definitions relating the K2-functionals to convexity 

properties of a sequence space. Suppose that (E, II.II)is a Banach sequence 

space. If 1 < r < s < ~ we say that the norm is K-(r, s)-monotonic if, whenever v, 

x, y, z are vectors in E which satisfy 

(Kz(r,v;l, , l~) ~ + K2(~-,x;l,,l~)') ~/~ <-_(K2(r,y;l,,l~)" + K2(r,z;l,,l~)') '~" 

for all r > O, it follows that 

(l lv II ~ + IIx I1~) ''~ --< (l ly [l' +l lz l l ' )  '/'. 

If 1 < p < oo we say that the norm is K-(p, oo)-monotonic (K-p-monotonic, for 

short) if, whenever x, y and z are vectors in E which satisfy 

Kz(r, x ; lp, l~f <= K2(r, y ; lp, l~f + K2(r, z ; lp, l~)" 

for all ~" > O, it follows that 

II x I1" --< II y I1' + II z I1". 

The relevance of these definitions is suggested by the following proposition, 

which is an immediate consequence of Proposition 2 and the definitions of 

r-convexity and s-concavity. 

PROPOSITION 7. Suppose that 1 <= r <= 2 <= s <= ~. I f  (E, II II) is a Banach 

sequence space with a K-(r, s)-fnonotonic norm then (E, [[ II) is symmetric, and is 

r-convex and s-concave, with Mt')(E) = M<,)(E) = 1. 

The next result shows that K-(r, s) monotonicity leads to important conse- 

quences for unitary ideals. 
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PROPOSITION 8. Suppose that (E, 11. II) is a symmetric Banach sequence space. 

(i) If 1 < p <- 2 and tl. tl is K-p-monotonic, and i rA  is a positive operator and B 

a Hermitian operator in SE, then 

IIm ÷ iBII~<=IIA I1~ ÷ 2lIB I1~. 

(ii) If  1 < r <-_ 2 <= s < oo there exist positive constants c and C such that if II. II is 

a K-(r, s)-monotonic norm then 

[½(llm + B I1~+ [[A - B I1~)]'" ---- ([IA II~+ c liB I[~) ''~ 

and 

[½(IIA ÷ B I1~÷ IIA - B I1~)] ''s ~ (IIA II~÷ GlIB I1~)'" 

for all operators A and B in S~. 

PROOF. (i) Suppose that A = Ao + A~, where Ao and A~ are positive and that 

B = Bo + B~, where Bo and B1 are Hermitian. Then 

A + iB = (Ao+ iBo)+ (A,  + ibm), 

and so, if ~-> 0, 

K2( r, A + iB ; Sp, S~) <= (ll Ao + iBoll~ + ~=11 A ~ + iB~ I1~) ''= 

--< ((llAoll~ + 211Boll~) ~'p + (~P II a~ll~ + 2~ p II B,II~)~'P) ''~ 

by Propositions 5 (i) and 6 (i). By the triangle inequality in 12/p, it follows that 

2 /2  2 
K2(T, A + iB ; Sp, S~) <= [(11Ao 112p + ~'=11 A, I1~) v + 2( II Bo I1~ + • ~11 B~ H~) ;/2]'/p. 

Taking the infimum over all such decompositions of A and B, it follows that 

K:(~-, A + iB ; Sp, S~f  <= (K2(r, A ; Sp, S~)y + 2(K2(~-, B ; Sp, S~)) p. 

Thus 

K2(~', s (A  + iB ); lp, l.) e <-_ (K2(r, s(A);  Ip, l~)) e + 2(K2(~-, s(B); l e, l~)) e 

so that 

II A + iB II p = II s (A + iB)ll p ~ II s (A)ll p + 211 s (B)ll p = II a I1~ + 211B I1~ 

by the K-p-monotonicity of the norm. 

(ii) To show the first inequality suppose that A + B = To + T1 and A - B  = 

R o + R l ,  where To and Ro are in S, and T~ and R1 are in Ss. Let Ao =½(To+Ro) 

and A~ = ½(T1 + R1) and, similarly, let B0 = ½(To - Ro) and B1 = ½(T1 - R 1 ) .  Note 

that A = A o + A ~  and B = Bo+B~. So if ~->0 and c > 0 ,  
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(K2(r, A ; S,, S,)" + cK2(T, B ;  £ ,  Ss)S) '/:' 

---< {(11 A o 112~ + ~'211 A,  It~) s/2 + c (11Bo 112, + I" 211 B, 112~) s/2} 1/~ 

--< {(]lmoH:+ c lira]l;) 2" + ~2(llmlH:+ c IIs, ll:)2's} ''2, 

by the triangle inequality in Is/2. Since s >_- 2, it follows f rom Proposit ion 4 that if 
• s12 c = mln(c .... G.,) then 

(K2(r, A ; S,, S~)" + cK2(r, B ; S,, S~)')1/~ 

=< {6(11Ao + Bo[I; + II Ao - Bo11,3) 2" ÷ 2(½(11 A, ÷ B1 I1: + II A,  - B1 II;)) 2''}1'' 

--< {-~[( II A o + Bo I1~ + • ~11 A1 + B~ I1~) ''2 + (11 a o - Bo II 2, + • 211A~ - B 111.)2.2 ]} 1,. 

= {½[(11 To II~ + r 211 T, I1~) "2 + (11Ro II, z + ~.2 II R,  112)r/2]}l/r, 

by the triangle inequali ty in 12/,. Taking the infimum over all such decomposi-  

tions of A + B and A - B ,  it follows that  

(K2(r, A ; S,, S,)" + cKffr, B;  S,, S,) ' )  1'~ 

S " =< {½(K2(r, A + B;  S,, s) + K2(r ,A - B ,  S,,S,~YW',, . 

Thus, by Proposit ion 3 (i), 

{K2(~', s ( A ) ;  l,, l,) ~ + cK2(~', s (B) ;  l,, l,)~} ~/~ 

_-< {½(Kffr, s ( A  + B);  l,, l,)' + K2(z, s ( A  - B);  l,, l,)')} 1", 

and so the first inequali ty follows by K-(r, s)-monotonici ty of the norm. 

The proof of the second inequality is analogous, and we omit it. 

THEOREM 1. Suppose that 1 < p <= 2 and that E is a symmetric Banach 

sequence space, whose dual E '  has a K-p-monotonic norm. Then the associated 

unitary ideal SE is p'-uniformly PL-convex (where 1/p + 1/p' = 1). 

PROOF. Suppose that  S and T are in Se, with II s II = 1. There  exist partial 

isometries U and V, with U onto and V one-one,  such that  V S U  is positive• 

Suppose that  e > 0. There  exist unit  vectors A and B in SE., with A positive, 

such that  

t r ( V S U a ) > = l - e ,  I t r (VTUB)- I I  Zll I < ~IITII. 

Let  C~ = ie'°13" - ie-'~B, for 0 < 0 _-__ 2~-. Note that  C~ is Hermit ian,  so that  if 

/3>0 
}1A + i/3G ll~-<- 1 + 2(2/3)~, 
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by Proposition 8(i). Thus, since II S + e'°Tll = II V S U  + e'°VTUII, 

(1 + 2(2/3)P) 1/p ~ fo2= [I(S + e'°T)lldO 

=> Re ~ fo 2= t r (VSU + e ' ° V T U ) ( A  + i/3Co)dO 

= Re t r (VSUA + / 3 V T U B )  

--> 0 -  e)(1 +/3 Ilzll). 

Setting /3 = II Tb["'-'/22p'-', it follows, since e is arbitrary, that 

1~o2~ ( T p''I'~' 2-; IIs + e'°rlldo >= 1 + ~ )  . 

THEOREM 2. Suppose that 1 < r < 2 < s < ~ and that (E, I1-II) is a symmetric 

Banach sequence space whose norm is K-(r, s )-monotonic. Then S~ is uniformly 

convex with modulus of convexity of power type s and uniformly smooth with 

modulus of smoothness of power type r. 

PROOF. Suppose that e > 0 and that r and R are in S~, with I1 rl[~ = lie I1~ = 
1 and II r -  R lIE = e. It follows from the first inequality in Proposition 8(ii), 

applied to A = ( T + R )/2 and B = ( T - R ) ~ 2 ,  that 

(I-~l ; (2) S) 1Is 
+ c  = <1 ,  

where c > 0 depends only on r and s. Therefore 

1 -  ~ 1 -  1 - c  >-c'e'. 

Taking the infimum over all such operators T and R, it follows that &E (e)=> 
Ct ~ s. 

Next suppose that z > 0  and T and R are in S~, with IlYll~ = 1, IIRII~ = ~. 
From the second inequality in Proposition 8(ii) it follows that 

{½([[T+RII~+IIT-RII~)} '"  =< (1 + C , ' )  '/'. 

Thus 

½(11Z + R I1~ + l i T - R  I1~)- 1 -< (1 + C~")"  - 1 -< C'z' .  

Taking the supremum over all such operators T and R it follows that 

Os~ (r)  <-_ C'~'. 
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5. The cotype of operator ideals 

Theorem 1 raises the questions: Under what circumstances does a symmetric 

Banach sequence space have a K-p-monotonic norm? Under  what cir- 

cumstances can a symmetric Banach sequence space be given an equivalent 

symmetric norm which is K-p-monotonic? We shall consider the second of these 

questions. The next proposition is well-known: for completeness' sake we give a 

proof. 

PROPOSITION 9. Let (X, II tJ) be a K6the function space for which X '  is 
norming, and suppose that 1 < p < o0. Then (X, JJ It) is p-convex, with McP)(X) = 
1, if and only if there exists a set A of non-negative measurable functions such that 

Ilfll = sup  [f[Padi.L 
a ~ A  

for each f in X. 

PROOF. If f is measurable, let fP=[f[P sgnf. Let X p ={f f  : r e x } ,  and if 

g = f f  E X p, let II g IJ,,, = Ill It p. Then (X p, ]Jr II,,)) is a K6the function space, which is 
a concrete representation of the p-concavification of (x, ll Jl) ([81 p. 54). If 
0 < g. I' g a.e. then 0 =  < g~./P ]' g'/P a.e., so that, by [8] proposition 1.6.18, (XP) ' is 

norming for (X ~,11 L,). Thus there exists a set A of non-negative measurable 

functions such that 

I[g 11~,, = sup f ]gladl.t 
a ~ A  J 

for each g in X p. Consequently 

, . , - s u p  IflPad.) 

for each f in X. The converse implication is trivial. 

Suppose now that (X,]] ][) is a rearrangement invariant space on II, in the 

sense of [8] (so that ~ = {1, 2 , . . .  }, [0,1] or [0, oo)). Then there exists a set A of 

non-negative non-increasing functions on f~ such that 

sup ( f*adlx Ilfll 
a ~ A  . I  

(where f* is the decreasing rearrangement of f), for each f in X. Let us set 

f t(t)  = fo' f*(s)dl't(s)' 
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and let M be the set of positive measures { -  da : a E A}. Then 

Ilfll = sup ( f*dv 
vEM J fl 

for each f in X. Following through the argument of Proposition 9, we obtain 

PROPOSITION 10. Let (X, II II) be a rearrangement invariant space, and sup- 

pose that 1 < p < oo. Then (X, II II) is p-convex, with M'P)(X) = 1, if and only if 

there exists a set M of positive measures on ~ such that 

Ilfll ~ = sup ( (fP)*dv 
t, E M  

for each f in X. 

THEOREM 3. Suppose that 1 < p <= 2 and that (E, II II) is a symmetric Banach 

sequence space. Then E is p-convex if and only if there exists an equivalent 

K-p-monotonic norm It IlK on E. 

PROOF. Suppose that E is p-convex. By [8] proposition 1.d.8, we can replace 

the norm on E by an equivalent norm whose p-convexity constant is 1, and this 

norm is clearly symmetric. By Proposition 10, we can suppose that there exists a 

set C of positive sequences such that 

c~C n = l  j = l  

for each x in E. We now set 

IIx IlK =~up c n ( K 2 ( n l / P , x ; l p ,  l~)) p)  . 

Clearly II,~x IlK = I'~ P ItX I1" By Proposition 1, ]ix IlK --< IIx II -< U"'lJx IlK" It follows 
from Proposition 2 and the definition of ]] ]]K that 

II(Ix I' + ly P')'/~ IlK =< (llx I]~,+ tl Y I1~)':', 

for all x and y in E. Consequently the p-concavification of (E, II IlK) is a normed 

space. (E ]] ]]K) is the p-convexification of this, and so is a normed space (cf. [8] 

p. 53). Thus II IlK is a norm on E which is equivalent to II lit- Finally the fact 

that II IlK is K-p-monotonic  follows directly from the definition of II IlK. 

The converse statement is an immedite consequence of Proposition 2. 

Using the duality between q-convexity and q'-concavity, ([8] proposition 

1.d.4), the fact that a Banach lattice has cotype 2 if and only if it is 2-concave ([8] 
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theorem 1.f.16) and the fact that a q-uniformly PL-convex Banach space has 

cotype q, we obtain the following conclusions. 

THEOREM 4. Suppose that (E,[[ 11) is a symmetric Banach sequence space. 

(a) The following are equivalent: 

(i) E has cotype 2; 
(ii) SE has cotype 2; and 

(iii) there is an equivalent unitary-invariant norm on SE under which it is 

2-uniformly PL-convex. 
(b) I f  E is q-concave (where 2 <= q < oo), S~ has cotype q, and can be given an 

equivalent unitary-invariant norm under which it is q-uniformly PL-convex. 

Theorem 4, combined with the duality theory for Banach lattices (cf. [8] 

chapter 1), gives analogous results for the type of a unitary ideal. 

COROLLARY. Suppose that (E, H. II) is a symmetric Banach sequence space. 

(a) The following are equivalent: 

(i) E has type 2; 

(ii) S~ has type 2. 

(b) I f  E is p-convex (where 1 < p <- 2) and is q-concave for some 2 <= q < 

then SE has type p. 

PROOF. If SE has type 2 then E has type 2, and if E has type 2 then E is 
2-convex and q-concave for some 2 _-< q < ~ ([8] proposition 1.f.7). It is therefore 

sufficient to establish (b). E '  is p'-concave (where p '  = p/(p  - 1)) and r-convex 

for some 1 < r _-< 2 ([8] proposition 1.d.4). This means that E '  is 0-Hilbertian 

([10] theorem 2.2) and so SB, is 0-Hilbertian ([1] theorem 2.4). Thus ST, is 

K-convex ([11] th6or~me 1). As SE, has cotype p', it follows that S~ = (SE,)' has 

type p. 
Theorem 4 suggests the following problems: 

PROBLEM 1. If (E, II II) is a q-concave symmetric sequence space (where 
2 <_- q < ~), is SE q-uniformly PL-convex? 

PROBLEM 2. If (E, II II) is a symmetric sequence space of cotype q (where 

2 < q < oo), is S~ of cotype q ? 

Note that it follows from Theorem 4(b) and [8] corollary 1.f.9 that, under the 

hypotheses of Problem 2, SE is of cotype s for all q < s < oo. 
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6. The uniform convexity and uniform smoothness of operator ideals 

In this final section we shall prove the following. 

THEOREM 5. Suppose that l < p < : q  <oo and that (E, II.It) is a symmetric 

Banach sequence space which satisfies an upper p-estimate and a lower q- 

estimate. Let 1 < r < p, q < s < oo a n d  r <: 2 <-_ s. Then there is an equivalent 

symmetric sequence space norm on E such that S~ is uniformly convex with 

modulus of convexity of power type s and uniformly smooth with modulus of 

smoothness of power type r. 

T h e o r e m  5 is a direct  consequence  of T h e o r e m  2 and the renorming  theorem 

below. The  new norm that  we int roduce involves K2-functionals, but  is ra ther  

different f rom the norms that  we considered in earlier sections. 

THEOREM 6. Suppose that 1< r < p ~ q < s < o% that r <= 2 <= s and that 

(E, II. 11) is a symmetric Banach sequence space which satisfies an upper p-estimate 

and a lower q-estimate. Then there is an equivalent symmetric sequence space 

norm on E which is K-(r, s)-monotonic. 

PRoov. By [8] t heo rem 1.f.7 and propos i t ion  1.d.8 we can give E an 

equivalent  norm II. lie for which M Cry= M~s)= 1, and it is clear that  this is a 

symmetr ic  sequence norm.  

For  each n = 0 , 1 , ~ . .  let us set 

2 n + 1 - - 1  

f o =  E em, 
m = 2  ~ 

where e,, is the m t h  unit vector  (0 . . . . .  0, 1,0 . . . .  ). If x C E we set 

IIx I1,, ~:o °" °° = 2 K2(2 , x ;  lr, l ,)f ,  
E ~ 

where  ~ = 1/r - 1/s. First we show that there are positive constants  a and b such 

that  

a II x II~ =< II x II~ --< b II x IlK 

for each x E E. We can clearly suppose that  x = x *. By Proposi t ion  1, there exist 

positive constants  c~ and c2 such that  

c2K2(2"~,x;lz, l~)<= x; + 2  "~ x~ 
] - -  1 

<-- clK2(2'~'~,x; L, 1~), 
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for each x E ls. Thus 

> ~ x f o  2 n 

) E 

_-> .~ x . e °  ~ = IIx  I1~, 
since x = x*. Conversely,  

Now 

where we set xz, = 0 if i < 0. We can write 

n = o  

where Yi = 2-J/" E~=0 x2--J[,, so that by r-convexity 

Since (E, II. II-) satisfies a n  upper p-est imate,  its upper Boyd index is greater than 

or equal to p (cf. [8] p. 132). Therefore  there exists a constant  M such that 

for all x E E. Thus 

( ) 1/r / ~ \ l/r 
--< M ( Z  2-m-"" ' /  I1" II-- -~--o 2-"/' ~ x ;  ,=, "¢"e \,=o / 
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On the other hand, 

-n/s ~ 1Is < ~ \ k~ n k - n  s / 1/.* l ie  l Zo ~ (~Lx~) ~=  ~o(~ x~t ~.1 

where zj = 2 j/' Y-7=o x2,÷of,. By r-convexity, 

] / ~  \~ / 'E  ( i ~  \1/, 
(,~ z 0 ~ iIz, ll~) 

= l • \ 1/• 

Since (E, II. liE) satisfies a lower q-estimate, its lower Boyd index is smaller than 
or equal to q (cf. [8] p. 132). It follows that there exists a constant M such that 

for all x E E. Therefore 

t, 1 x t/  liE M 2' r's r'q't l'r,, 
This establishes (t). 

The fact that II-I1~ is a norm follows directly from the triangle inequality for 
K2-functionals. The K-(r, s)-monotonicity of II.ll~ follows directly from the 
definition of [I. It,, and the fact that the r-convexity and s-concavity constants of 
(E, II.IIE) are both equal to one. 

Theorem 5 has the following consequence. 

COROLLARY 1. Suppose that (E, II.II) is a uniformly convex and uniformly 

smooth symmetric Banach sequence space with modulus of convexity of power type 

q (where 2 <= q < oo) and modulus of smoothness of power type p (where 

1 < p =< 2). Then for every 1 < r < p, q < s < oo, there is an equivalent symmetric 

sequence space norm on E such that SE is uniformly convex, with modulus of 

convexity of power type s, and uniformly smooth with modulus of smoothness of 

power type r. 
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This corollary should be compared with the observation of G. Pisier [10] 

section 4, (*) (see also [2]) which states that if 1 <p_-<2_-<q < ~  and E is a 

symmetric Banach sequence space which is p-convex and q-concave with 

MtP)(E) = M~q)(E) = 1 then 

(½([] A + B [[~ + [[ A - B ][~)),/r, __< ([[ A [[~ + II B [[~),/r 

for all operators A and B in S~, where q ' = q ( q - 1 ) ,  r =min(p ,q ' )  and 

r' = r/(r - 1). From this it follows that SE is uniformly convex with modulus of 

convexity of power type r' and uniformly smooth with modulus of smoothness of 

power type r. 

In fact it is possible to improve this last result a little. Suppose that p < q'. 

Define t, s and 0 by 

1__1(¼ 1 0 
t 2 + - = -  + ( 1 - 0 )  and 1 = 0  ( w h e r e p ' = p / ( p - 1 ) ) .  

' p s q s 

Then by remark 2.6 of [10] there exists a symmetric Banach sequence space Eo 

such that E is the complex interpolation space [Eo, Is]o. As p < q', 1 < s < 2 and 

so S~ is uniformly convex with modulus of convexity of power type 2. This means 

that there exists 0 < c _-< 1 such that 

(llm + B II~ + c2ll A - B I1:) ~'2_-< x/2(llA II~ + lib I1:) ''2 

for all A and B in St, and so the map 

( A , B ) ~ ( A  + B , c ( A  - B ) ) :  S, (~):S~---> S, @2S~ 

has norm at most X/2. The map 

( A , B ) - - ~ ( A  + B , c ( A  - B ) ) : S ~ @ ~ S ~ - - - ~  S ~ @ ~ S ~  

has norm 2 and so, since 

s~ ®,s~ =[s~@~s~, s~ @~s~]~, 

n t 1/t (UA +BII'~+c'IIA- lie) --<2x-'"(IIAII~+IIBII~) 1'' 

for all A and B in $~. This means that S~ is uniformly convex with modulus of 

convexity of power type t. 

By duality, if p > q' then S~ is uniformly smooth with modulus of smoothness 

of power type t' = t / ( t  - 1). 

The results of this section raise the following natural problems: 

PROBLEM 3. Suppose that 1 < p _-< 2 _-< q < oo and that (E, [I II) is a symmetric 
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sequence space which is p-convex and q-concave. Is there an equivalent K-  

(p, q)-monotonic norm on E ? 

PROBLEM 4. Under  the hypotheses of Problem 3, is there an equivalent norm 

on (E, II II) such that SE is uniformly convex with modulus of convexity of power 

type p and uniformly smooth with modulus of smoothness of power type q? 

P R O B L E M  5. Suppose that 1 < p _-< 2 =< q < 0o and that (E, IJ 11) is a symmetric 

sequence space with M(P~(E) = M ( q ) ( E )  --- 1. Is SE uniformly convex with mod- 

ulus of convexity of power type p and uniformly smooth with modulus of 

smoothness of power type q ? 

PROBLEM 6. Does the conclusion of Problem 4 (or the conclusion of Problem 

5) hold if (E, II II) is uniformly convex with modulus of convexity of power type p 
and uniformly smooth with modulus of smoothness of power type q? 

PROBLEM 7. Does the conclusion of the corollary hold without renorming? 

Finally let us mention a consequence of Theorem 6, which may be of 

independent interest in interpolation theory. For simplicity we formulate it for 

symmetric Banach sequence spaces; it is also true for rearrangement-invariant 

function spaces. 

COROLLARY 2. Suppose that 1 < r < p <= q < s < o% that r <= 2 <= s, and that 

(E, II. tl) is a symmetric Banach sequence space which satisfies an upper p-estimate 
and a lower q-estimate. Suppose further that T is an operator which is continuous 
as an operator from ( l, ~) l, ), to (It ~) l, ), and from ( l, ~ ls )r to (Is ~ ls )s. Then T is 
continuous as an operator from (E ~ E),  to (E ~ E)~ and 

lJ T : (E ~) E),  ~ (E 0 E) ,  II 

=<c max[[] T : (l, Ol,)~---~(lr G l,), II,ll r : (l~ E])l~),---~(l~ O l~)s H]. 

Moreover, there exists an equivalent symmetric sequence space norm on E such 

that the inequality holds with the constant c = 1. 

SKETCH OF PROOF. By Theorem 6 it is clearly enough to show that if tt-tt is 

K-if,  s)-monotonic norm on E and T is an operator such that 

max[l lr  :(L e l,), ~ ( l ,  @l, ) , l l , l l r  :(l, G l , ) ,  ~ ( l ,  Ol,)~ll]~= l 

then II T : (E ~ E),  ~ (E ~ E)s II ~= 1. 
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Suppose that  (x, y ) E  E • E  and that  x = xo+  xl and y = yo+  y,, where  Xo 

and yo are in l, and xl and yl are in Is. Let  (v, z )  = T(x ,  y), (Vo, zo) = T(xo, yo) and 

(Vl, zl) = T(x l ,  y~). Then  Vo and Zo are in L, vl and zl in ls ; moreover ,  v = Vo + Vl 

and z = Zo+ zl. There fo re  

(K2(r;  v ; l,, ls)" + K f f r ;  z ; l,, l,)S )l/s ~_~ {( It ~)0112 + P/'511 v, 11,2) "'2 + (11 zoll, ~ + 211Zlll~)"T'" 

<={(llooll:+llzol12" + r~(ll Vlll;+ Ilzlll;)2"} l'= 

2 2 i / 2  = {ll T(xo, yo)ll,,,e,,), + ~'211T(xl, Yl)II,,,~,,,~ 

2 1/2 
--< {ll(xo, yo)ll~l,~,,. + ~=ll(xl, yl)ll,,s.,,~,} 

--< {(11Xo II, ~ + • 211 x l I1~) "2 + (11 yo II, ~ + • 211 y l I1~)'=} 1'' 

Thus, taking the infimum over  all such decomposi t ions  for  x and y, it follows 

that  

( K d r ,  v ; l , , l~)  ~ + Kf fr ,  z ; L , l ~ ) ' )  u" <-<_(K2(~',x;l,,l~)" + K 2 ( r , y ; l , , l , ) ' )  1". 

The  K-(r ,  s ) -monotonic i ty  of the n o r m  implies that  

II T(X, y ) l l < ~ , ,  = (11 o II" + II z I1") 1'~ 

--< (llg I1' + II y I1") 1'' = II(x, y ) l l , ~ , . .  

This  s h o w s  that II T : ( E  @ E ) ,  ~ ( E  @ E)~ II---< 1. 

A d d e d  in proof. The  second named  author  has recently showed that  Prob-  

lems 1 and 5, hence  also Problem 4, have positive solutions. 
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